Modeling Polynomial Functions of Two Discrete Variables

Warren P. Adams* and Stephen M. Henry**

* Department of Mathematical Sciences, Clemson University
** System Readiness and Sustainment Technologies Group, Sandia Natl. Labs.

July 24, 2014
"So the last will be first"

Matthew 20:16.
"So the last will be first"
"and the first will be last."

Matthew 20:16.
Outline

1. Overview
 - Problem of interest
 - Classical approaches
 - Objective

2. Focus on a single variable
 - Use of LIPs
 - Examples of LIPs
 - Property 1 of LIPs

3. Focus on two variables
 - Property 2 of LIPs
 - Property 3 of LIPs
 - Use of projections

4. Question and final comments
Quadratic expressions

The linearization of products of variables within optimization problems has been an active area of study for over 50 years. Given variables x_1 and x_2, how do we model the product $x_1 x_2$ when

- x_1 and x_2 are binary?
- x_1 and x_2 are continuous (bounded)?
- x_1 and x_2 are general discrete?
- x_1 and x_2 are a mix of the above three?
Quadratic expressions

The linearization of products of variables within optimization problems has been an active area of study for over 50 years. Given variables x_1 and x_2, how do we model the product $x_1 x_2$ when

- x_1 and x_2 are binary?
- x_1 and x_2 are continuous (bounded)?
- x_1 and x_2 are general discrete?
- x_1 and x_2 are a mix of the above three?

A standard approach is to introduce a new variable w_{12} which represents this product, and then form a polytope that enforces $x_1 x_2 = w_{12}$ at all extreme points.
Quadratic expressions

The linearization of products of variables within optimization problems has been an active area of study for over 50 years. Given variables x_1 and x_2, how do we model the product $x_1 x_2$ when

- x_1 and x_2 are binary?
- x_1 and x_2 are continuous (bounded)?
- x_1 and x_2 are general discrete?
- x_1 and x_2 are a mix of the above three?

A standard approach is to introduce a new variable w_{12} which represents this product, and then form a polytope that enforces $x_1 x_2 = w_{12}$ at all extreme points.
Fortet/Glover approach for binary products

Fortet/Glover inequalities

\[w_{12} \geq 0 \]
\[w_{12} \geq x_1 + x_2 - 1 \]
\[w_{12} \leq x_1 \]
\[w_{12} \leq x_2 \]

These inequalities give

\[\text{conv}\{x_1 \in \{0, 1\}, x_2 \in \{0, 1\}, w_{12} = x_1 x_2\}. \]

Every binary product is associated with an extreme point, and the polytope enforces \(w_{12} = x_1 x_2 \) when \(x_1, x_2 \in \{0, 1\} \).
McCormick approach for continuous/discrete products

McCormick Inequalities

\[
\begin{align*}
 w_{12} & \geq l_2 x_1 + l_1 x_2 - l_1 l_2 \\
 w_{12} & \geq u_2 x_1 + u_1 x_2 - u_1 u_2 \\
 w_{12} & \leq u_2 x_1 + l_1 x_2 - l_1 u_2 \\
 w_{12} & \leq l_2 x_1 + u_1 x_2 - u_1 l_2
\end{align*}
\]

These inequalities give

\[
\text{conv}\{x_1 \in [l_1, u_1], x_2 \in [l_2, u_2], w_{12} = x_1 x_2\}.
\]

Every integer product is not associated with an extreme point, and the polytope does not enforce \(w_{12} = x_1 x_2\) when \(x_1, x_2 \in \{0, 1, 2\}\).
An optimization problem

How to solve the below as a linear program?

minimize \(\{(x_1 - 1)^2 + (x_2 - 1)^2 : x_1 \in \{0, 1, 2\}, \ x_2 \in \{0, 1, 2, 3\}\} \)

Desire a polytope having 12 extreme points to correspond to the 12 realizations of \((x_1, x_2)\), and all linearized variables to equal to their intended products at the extreme points.
A new family of polytopes

Let $x_1 \in S_1 \equiv \{\theta_{11}, \ldots, \theta_{1k_1}\}$ and $x_2 \in S_2 \equiv \{\theta_{21}, \ldots, \theta_{2k_2}\}$, assume in increasing order.

We wish to linearize polynomial expressions of the form

$$p(x_1, x_2) \equiv \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j.$$
A new family of polytopes

Let $x_1 \in S_1 \equiv \{\theta_{11}, \ldots, \theta_{1k_1}\}$ and $x_2 \in S_2 \equiv \{\theta_{21}, \ldots, \theta_{2k_2}\}$, assume in increasing order.

We wish to linearize polynomial expressions of the form

$$p(x_1, x_2) \equiv \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j.$$

To do this, we introduce a family of discrete polytopes

$$DP(d_1, d_2) = \text{conv} \left\{ x_1 \in S_1, \; x_2 \in S_2, \begin{array}{l} w_{ij} = x_1^i x_2^j \quad \forall (i, j) \ni i + j \geq 2, \quad \forall i \ni \{0, \ldots, d_1\}, \; \forall j \ni \{0, \ldots, d_2\} \end{array} \right\}.$$
How to define such polytopes?
Discrete polytopes - summary of results, round 1

Objective

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \ x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}. \]

<table>
<thead>
<tr>
<th>(d_2)</th>
<th>0</th>
<th>1</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_1 = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 \leq d_1 \leq k_1 - 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_1 = k_1 - 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j
\]

Warren P. Adams and Stephen M. Henry
The Ohio State University, 2014 MIP Workshop
Overview
Focus on a single variable
Focus on two variables
Question and final comments

Problem of interest
Classical approaches
Objective

Discrete polytopes - summary of results, round 1

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \; x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}. \]

<table>
<thead>
<tr>
<th></th>
<th>(d_2 = 0)</th>
<th>(d_2 = 1)</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = 0)</td>
<td>constant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_1 = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 \leq d_1 \leq k_1 - 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_1 = k_1 - 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{i,j} x_1^i x_2^j
\]

Warren P. Adams and Stephen M. Henry
The Ohio State University, 2014 MIP Workshop
Discrete polytopes - summary of results, round 1

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \ x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}. \]

<table>
<thead>
<tr>
<th></th>
<th>(d_2 = 0)</th>
<th>(d_2 = 1)</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = 0)</td>
<td>constant</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_1 = 1)</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 \leq d_1 \leq k_1 - 2)</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_1 = k_1 - 1)</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
</tr>
</tbody>
</table>

\[p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j \]

Warren P. Adams and Stephen M. Henry The Ohio State University, 2014 MIP Workshop
Discrete polytopes - summary of results, round 1

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \ x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}. \]

\[
\begin{array}{|c|c|c|c|}
\hline
 & d_2 = 0 & d_2 = 1 & 2 \leq d_2 \leq k_2 - 2 & d_2 = k_2 - 1 \\
\hline
\hline
\text{ } & \text{constant} & \theta_{21} \leq x_2 \leq \theta_{2k_2} & & \\
\hline
\hline
\text{ } & \theta_{11} \leq x_1 \leq \theta_{1k_1} & \text{Glover/McCormick} & & \\
\hline
\hline
\text{ } & \theta_{11} \leq x_1 \leq \theta_{1k_1} & & & \\
\hline
\hline
\text{ } & \theta_{11} \leq x_1 \leq \theta_{1k_1} & & & \\
\hline
\end{array}
\]

\[p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j \]
Discrete polytopes - summary of results, round 1

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \ x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}. \]

<table>
<thead>
<tr>
<th>(d_1 = 0)</th>
<th>(d_2 = 0)</th>
<th>(d_2 = 1)</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
</table>
| constant | \(\theta_{21} \leq x_2 \leq \theta_{2k_2}\) | \n
| \(d_1 = 1\) | \(\theta_{11} \leq x_1 \leq \theta_{1k_1}\) | \(\text{Glover/McCormick}\) |

<table>
<thead>
<tr>
<th>2 \leq d_1 \leq k_1 - 2</th>
</tr>
</thead>
</table>

| \(d_1 = k_1 - 1\) | ???? |

\[p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j \]
LIPs

Suppose that \(x \in \{\theta_1, \theta_2, \ldots, \theta_k\} \). Then there exist \(k \) Lagrange interpolating polynomials (LIPs), with each being a polynomial of degree \(k - 1 \).

\[
L_i(x) = \frac{\prod_{j=1, j \neq i}^{k} (x - \theta_j)}{\prod_{j=1, j \neq i}^{k} (\theta_i - \theta_j)} \quad \text{for all } i = 1, \ldots, k
\]

\[
xL_i(x) = \theta_i L_i(x) \quad \text{for all } i = 1, \ldots, k
\]
LIPs

Suppose that \(x \in \{\theta_1, \theta_2, \ldots, \theta_k\} \). Then there exist \(k \) Lagrange interpolating polynomials (LIPs), with each being a polynomial of degree \(k - 1 \).

\[
L_i(x) = \frac{\prod_{j=1, j \neq i}^{k} (x - \theta_j)}{\prod_{j=1}^{k} \theta_i - \theta_j} \quad \text{for all } i = 1, \ldots, k
\]

\[
x L_i(x) = \theta_i L_i(x) \quad \text{for all } i = 1, \ldots, k
\]

[Adams, Sherali 2005] shows how LIPs can be used to construct a hierarchy of relaxations for mixed-discrete programs, culminating with an explicit convex hull description.
LIPs for a binary variable

Suppose $x \in \{0, 1\}$. Then there exist 2 LIPs, with each being a polynomial of degree 1.

\[
L_1(x) = 1 - x, \quad L_2(x) = x
\]
Example for a discrete variable

LIPs for a discrete variable

Suppose that a discrete variable x can realize values in the set $S = \{-2, -1, 0, 1, 2\}$. Then there exist five LIPs of the form:

\[
L_1(x) = \frac{(x+1)(x-0)(x-1)(x-2)}{(-2+1)(-2-0)(-2-1)(-2-2)}
\]

\[
L_2(x) = \frac{(x+2)(x-0)(x-1)(x-2)}{(-1+2)(-1-0)(-1-1)(-1-2)}
\]

\[
L_3(x) = \frac{(x+2)(x+1)(x-1)(x-2)}{(0+2)(0+1)(0-1)(0-2)}
\]

\[
L_4(x) = \frac{(x+2)(x+1)(x-0)(x-2)}{(1+2)(1+1)(1-0)(1-2)}
\]

\[
L_5(x) = \frac{(x+2)(x+1)(x-0)(x-1)}{(2+2)(2+1)(2-0)(2-1)}
\]
Nonnegative LIPs in matrix form

Given $x \in \{-2, -1, 0, 1, 2\}$ the five LIPs, with nonnegativity enforced, are:

$$
\begin{bmatrix}
0 & \frac{1}{12} & -\frac{1}{2} & -\frac{1}{12} & \frac{1}{24} \\
0 & -\frac{2}{3} & -\frac{3}{2} & \frac{1}{6} & -\frac{1}{6} \\
1 & 0 & -\frac{5}{3} & 0 & \frac{1}{4} \\
0 & \frac{2}{3} & -\frac{4}{2} & 0 & -\frac{1}{6} \\
0 & -\frac{1}{12} & -\frac{1}{24} & \frac{1}{12} & \frac{1}{24}
\end{bmatrix}
\begin{pmatrix}
x \\
x^2 \\
x^3 \\
x^4
\end{pmatrix}
\geq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}.
$$
Nonnegative, linearized LIPs

Given $x \in \{-2, -1, 0, 1, 2\}$, the five nonnegative, linearized LIPs are:

$$
\begin{bmatrix}
0 & \frac{1}{12} & -\frac{1}{24} & -\frac{1}{12} & -\frac{1}{24} \\
0 & -\frac{2}{3} & -\frac{1}{3} & 0 & -\frac{1}{6} \\
1 & 0 & -\frac{4}{3} & 0 & -\frac{2}{3} \\
0 & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{6} & -\frac{4}{3} \\
0 & -\frac{1}{12} & -\frac{1}{24} & \frac{1}{12} & \frac{1}{24}
\end{bmatrix}
\begin{bmatrix}
x \\
x^2 \\
x^3 \\
x^4
\end{bmatrix}
\geq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}.
$$
Nonnegative, linearized LIPs

Given $x \in \{-2, -1, 0, 1, 2\}$, the five nonnegative, linearized LIPs are:

$$
\begin{bmatrix}
0 & \frac{1}{12} & -\frac{1}{24} & -\frac{1}{12} & \frac{1}{24} \\
0 & -\frac{1}{3} & \frac{2}{6} & 0 & -\frac{1}{6} \\
1 & 0 & -\frac{2}{4} & 0 & \frac{1}{4} \\
0 & \frac{2}{3} & -\frac{1}{3} & \frac{1}{6} & -\frac{1}{6} \\
0 & -\frac{1}{12} & -\frac{1}{24} & \frac{1}{12} & \frac{1}{24}
\end{bmatrix}
\begin{bmatrix}
x \\
x^2 \\
x^3 \\
x^4
\end{bmatrix}
\geq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}.
$$

This polytope has the 5 extreme points given by:

$$
\{ x \}_{L} \in \left\{
\begin{bmatrix}
-2 \\
4 \\
-8 \\
16
\end{bmatrix},
\begin{bmatrix}
-1 \\
1 \\
0 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
1 \\
1 \\
1 \\
4
\end{bmatrix},
\begin{bmatrix}
2 \\
8 \\
16
\end{bmatrix}
\right\}.
$$
Useful LIP property 1

Given $x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}$, suppose that we form all k_1 LIPs, set these polynomials nonnegative, and linearize the $k_1 - 2$ nonlinear terms to obtain a system of k_1 equations in $k_1 - 1$ variables.
Useful LIP property 1

Given $x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}$, suppose that we form all k_1 LIPs, set these polynomials nonnegative, and linearize the $k_1 - 2$ nonlinear terms to obtain a system of k_1 equations in $k_1 - 1$ variables.

The resulting system describes a polytope having k_1 extreme points, and each extreme point corresponds to some θ_{1i}, with $w_{i0} = x_1^i$ for all $i = 1, \ldots, k_1$. [Adams, Sherali 2005]
Discrete polytopes - summary of results, round 2

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \ x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}. \]

<table>
<thead>
<tr>
<th></th>
<th>(d_2 = 0)</th>
<th>(d_2 = 1)</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = 0)</td>
<td>constant</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td>??????</td>
<td>LIPs</td>
</tr>
<tr>
<td>(d_1 = 1)</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>Glover/McCormick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 \leq d_1 \leq k_1 - 2)</td>
<td>??????</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_1 = k_1 - 1)</td>
<td>LIPs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j\]

Warren P. Adams and Stephen M. Henry
The Ohio State University, 2014 MIP Workshop
The task of finding $DP(d_1, 0)$ for $d_1 \in \{2, \ldots, k_1 - 2\}$ (equivalently $DP(0, d_2)$ for $d_2 \in \{2, \ldots, k_2 - 2\}$) amounts to characterizing projections of the polytope defined by the LIPs.
Projecting LIPs of a single variable

The task of finding $DP(d_1, 0)$ for $d_1 \in \{2, \ldots, k_1 - 2\}$ (equivalently $DP(0, d_2)$ for $d_2 \in \{2, \ldots, k_2 - 2\}$) amounts to characterizing projections of the polytope defined by the LIPs.

We introduce the notion of type-0 and type-1 bit strings. For a k_1-length bit string with d_1 elements of value 1, we have a

- type-0 string if every 0 has an **even** number of 1’s to its right.
- type-1 string if every 0 has an **odd** number of 1’s to its right.
Projecting LIPs of a single variable

The task of finding $DP(d_1, 0)$ for $d_1 \in \{2, \ldots, k_1 - 2\}$ (equivalently $DP(0, d_2)$ for $d_2 \in \{2, \ldots, k_2 - 2\}$) amounts to characterizing projections of the polytope defined by the LIPs.

We introduce the notion of type-0 and type-1 bit strings. For a k_1-length bit string with d_1 elements of value 1, we have a

- type-0 string if every 0 has an even number of 1’s to its right.
- type-1 string if every 0 has an odd number of 1’s to its right.

What do these strings have to do with projecting LIPs???
Recall the LIPs for \(x_1 \in \{-2, -1, 0, 1, 2\} \) where \(k_1 = 5 \). These LIPs give the 4-dimensional polytope \(DP(4, 0) \).

\[
\begin{bmatrix}
0 & \frac{1}{12} & -\frac{1}{24} & -\frac{1}{12} & -\frac{1}{24} \\
0 & -\frac{2}{3} & \frac{2}{3} & \frac{1}{6} & -\frac{1}{6} \\
1 & 0 & -\frac{5}{4} & 0 & \frac{1}{4} \\
0 & \frac{2}{3} & -\frac{3}{2} & -\frac{1}{6} & -\frac{1}{6} \\
0 & -\frac{1}{12} & -\frac{1}{24} & \frac{1}{12} & \frac{1}{24}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_1^2 \\
x_1^3 \\
x_1^4
\end{bmatrix}
\geq
\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}.
\]

What if we want to project down onto the first 3 dimensions? This would give \(DP(3, 0) \).
We have $k_1 = 5$ and $d_1 = 3$, so an example of a type-0 and type-1 string is given by

\[
\text{type-0: } 1 \ 0 \ 1 \ 1 \ 0 \quad \text{type-1: } 0 \ 1 \ 1 \ 0 \ 1
\]
We have \(k_1 = 5 \) and \(d_1 = 3 \), so an example of a type-0 and type-1 string is given by

\[
\begin{align*}
\text{type-0:} & \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \\
\text{type-1:} & \quad 0 \quad 1 \quad 1 \quad 0 \quad 1
\end{align*}
\]

\[
\begin{align*}
\text{-2} & \quad -1 \quad 0 \quad 1 \quad 2 \\
\text{-2} & \quad -1 \quad 0 \quad 1 \quad 2
\end{align*}
\]
Projecting LIPs of a single variable

We have $k_1 = 5$ and $d_1 = 3$, so an example of a type-0 and type-1 string is given by

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-0:</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>type-1:</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\{ (x_1 + 2)(x_1 - 0)(x_1 - 1) \}_L \geq 0 \quad -\{ (x_1 + 1)(x_1 - 0)(x_1 - 2) \}_L \geq 0
\]
Projecting LIPs of a single variable

We have $k_1 = 5$ and $d_1 = 3$, so an example of a type-0 and type-1 string is given by

\[
\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & \\
\text{type-0:} & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\quad \quad \quad
\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & \\
\text{type-1:} & 0 & 1 & 1 & 0 & 1 \\
\end{array}
\]

\[
\{(x_1 + 2)(x_1 - 0)(x_1 - 1)\}_L \geq 0 \quad -\{(x_1 + 1)(x_1 - 0)(x_1 - 2)\}_L \geq 0
\]

Type-0 constraint \quad Type-1 constraint
Theorem

Given x_1 and any $d_1 \in \{1, \ldots, k_1 - 2\}$, the collection of all type-0 and type-1 constraints of size d_1 completely characterizes the projection of the k_1 linearized LIPs onto the first d_1 dimensions, and define all facets of $DP(d_1, 0)$.
Projecting LIPs of a single variable

Theorem

Given x_1 and any $d_1 \in \{1, \ldots, k_1 - 2\}$, the collection of all type-0 and type-1 constraints of size d_1 completely characterizes the projection of the k_1 linearized LIPs onto the first d_1 dimensions, and define all facets of $DP(d_1, 0)$.

Theorem

For $DP(d_1, 0)$ with $d_1 \geq 2$, every realization of x_1 corresponds to an extreme point.
Projecting LIPs of a single variable

\[DP(3, 0) \]

\[DP(2, 0) \]

\[DP(1, 0) \] is the set \(-2 \leq x_1 \leq 2\). Here the "middle" realizations do not have corresponding extreme points.

Warren P. Adams and Stephen M. Henry

The Ohio State University, 2014 MIP Workshop
Discrete polytopes - summary of results, round 3

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \ x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\} . \]

<table>
<thead>
<tr>
<th>(d_1)</th>
<th>(d_2 = 0)</th>
<th>(d_2 = 1)</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = 0)</td>
<td>constant</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td>proj. LIPs</td>
<td>LIPs</td>
</tr>
<tr>
<td>(d_1 = 1)</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>Glover/McCormick</td>
<td>proj. LIPs</td>
<td>proj. LIPs</td>
</tr>
<tr>
<td>(2 \leq d_1 \leq k_1 - 2)</td>
<td>proj. LIPs</td>
<td>proj. LIPs</td>
<td>LIPs</td>
<td>LIPs</td>
</tr>
</tbody>
</table>
| \(d_1 = k_1 - 1\) | LIPs | LIPs | LIPs | ????

\[p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j \]
Useful LIP property 2

Given $x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}$ and $x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}$, suppose that we multiply each of the k_1 LIPs of x_1 by each of the k_2 LIPs of x_2, and set the linearized terms nonnegative.

The set of $k_1 k_2$ linearized, nonnegative LIPs in $k_1 k_2 - 1$ variables describes a polytope having $k_1 k_2$ extreme points, and each extreme point corresponds to some $(\theta_{1i}, \theta_{2j})$ with $w_{ij} = x_1^i x_2^j$ for all $i = 1, \ldots, k_1 - 1$, $j = 1, \ldots, k_2 - 1$.
Recall the optimization problem

How to solve the below as a linear program?

minimize \(\{(x_1 - 1)^2 + (x_2 - 1)^2 : x_1 \in \{0, 1, 2\}, \ x_2 \in \{0, 1, 2, 3\}\} \)

Desire a polytope having 12 extreme points to correspond to the 12 realizations of \((x_1, x_2)\), and all linearized variables to equal to their intended products at the extreme points.
Recall the optimization problem

How to solve the below as a linear program?

minimize \(\{(x_1 - 1)^2 + (x_2 - 1)^2 : x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2, 3\}\} \)

Desire a polytope having 12 extreme points to correspond to the 12 realizations of \((x_1, x_2)\), and all linearized variables to equal to their intended products at the extreme points.

\((3 \text{ LIPs for } x_1) \otimes (4 \text{ LIPs for } x_2)\)
Recall the optimization problem

How to solve the below as a linear program?

\[
\text{minimize } \{(x_1 - 1)^2 + (x_2 - 1)^2 : x_1 \in \{0, 1, 2\}, \ x_2 \in \{0, 1, 2, 3\}\}
\]

Desire a polytope having 12 extreme points to correspond to the 12 realizations of \((x_1, x_2)\), and all linearized variables to equal to their intended products at the extreme points.

\[(3 \text{ LIPs for } x_1) \otimes (4 \text{ LIPs for } x_2)\]

But do we really want terms including \(x_2^3\)?
Discrete polytopes - summary of results, round 4

\[DP(d_1, d_2) \] for \(x_1 \in \{ \theta_{11}, \ldots, \theta_{1k_1} \} \), \(x_2 \in \{ \theta_{21}, \ldots, \theta_{2k_2} \} \).

<table>
<thead>
<tr>
<th>(d_1)</th>
<th>(d_2 = 0)</th>
<th>(d_2 = 1)</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = 0)</td>
<td>constant</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td>proj. LIPs</td>
<td>LIPs</td>
</tr>
<tr>
<td>(d_1 = 1)</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>Glover/McCormick</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>(2 \leq d_1 \leq k_1 - 2)</td>
<td>proj. LIPs</td>
<td></td>
<td>proj. LIPs</td>
<td></td>
</tr>
<tr>
<td>(d_1 = k_1 - 1)</td>
<td>LIPs</td>
<td>?????</td>
<td>LIPs</td>
<td></td>
</tr>
</tbody>
</table>

\[p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j \]
Useful LIP property 3

Given \(x_1 \in S_1 = \{\theta_{11}, \ldots, \theta_{1k_1}\} \) and any polytope \(P \) in variables, say \(y \) not including \(x_1 \), suppose that we multiply each of the \(k_1 \) LIPs of \(x_1 \) by each of the inequalities defining \(P \) and then linearize the resulting terms. Every extreme point of the higher-dimensional space has \(x_1 \) realizing one of its discrete values, and all linearized variables equal to their intended products.
Discrete polytopes - summary of results, round 5

\[DP(d_1, d_2) \text{ for } x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}, \ x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\} \]

<table>
<thead>
<tr>
<th>(d_1)</th>
<th>(d_2 = 0)</th>
<th>(d_2 = 1)</th>
<th>(2 \leq d_2 \leq k_2 - 2)</th>
<th>(d_2 = k_2 - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_1 = 0)</td>
<td>constant</td>
<td>(\theta_{21} \leq x_2 \leq \theta_{2k_2})</td>
<td>proj. LIPs</td>
<td>LIPs</td>
</tr>
<tr>
<td>(d_1 = 1)</td>
<td>(\theta_{11} \leq x_1 \leq \theta_{1k_1})</td>
<td>Glover/McCormick</td>
<td>????</td>
<td>RLT+LIPs</td>
</tr>
<tr>
<td>(2 \leq d_1 \leq k_1 - 2)</td>
<td>proj. LIPs</td>
<td>????</td>
<td>????</td>
<td>????</td>
</tr>
<tr>
<td>(d_1 = k_1 - 1)</td>
<td>LIPs</td>
<td>RLT+LIPs</td>
<td>????</td>
<td>LIPs</td>
</tr>
</tbody>
</table>

\[
p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j
\]
Using projections to linearize the product of two variables

We can acquire $DP(k_1 - 1, d_2)$ for $d_2 \in \{2, ..., k_2 - 2\}$ using the polytopes $DP(0, d_2)$ that we just obtained.
We can acquire $DP(k_1 - 1, d_2)$ for $d_2 \in \{2, ..., k_2 - 2\}$ using the polytopes $DP(0, d_2)$ that we just obtained.

Note: $DP(k_1 - 1, 0)$
Using projections to linearize the product of two variables

We can acquire $DP(k_1 - 1, d_2)$ for $d_2 \in \{2, \ldots, k_2 - 2\}$ using the polytopes $DP(0, d_2)$ that we just obtained.

Note: $DP(k_1 - 1, 0)$

LIPs for x_1
Using projections to linearize the product of two variables

We can acquire $DP(k_1 - 1, d_2)$ for $d_2 \in \{2, \ldots, k_2 - 2\}$ using the polytopes $DP(0, d_2)$ that we just obtained.

Note: $DP(k_1 - 1, 0) \otimes DP(0, d_2)$

LIPs for x_1
Using projections to linearize the product of two variables

We can acquire $DP(k_1 - 1, d_2)$ for $d_2 \in \{2, \ldots, k_2 - 2\}$ using the polytopes $DP(0, d_2)$ that we just obtained.

Note: $DP(k_1 - 1, 0) \otimes DP(0, d_2)$

LIPs for x_1 Projected LIPs for x_2
We can acquire $DP(k_1 - 1, d_2)$ for $d_2 \in \{2, \ldots, k_2 - 2\}$ using the polytopes $DP(0, d_2)$ that we just obtained.

Note: $DP(k_1 - 1, 0) \otimes DP(0, d_2) = DP(k_1 - 1, d_2)$

LIPs for x_1 \quad Projected LIPs for x_2
Again recall the optimization problem

How to solve the below as a linear program?

minimize \(\{(x_1 - 1)^2 + (x_2 - 1)^2 : x_1 \in \{0, 1, 2\}, \ x_2 \in \{0, 1, 2, 3\}\} \)

Desire a polytope having 12 extreme points to correspond to the 12 realizations of \((x_1, x_2)\), and all linearized variables to equal to their intended products at the extreme points.

\((3 \text{ LIPs for } x_1) \otimes (4 \text{ LIPs for } x_2)\)

But do we really want terms including \(x_2^3\)?

Warren P. Adams and Stephen M. Henry

The Ohio State University, 2014 MIP Workshop
Overview
Focus on a single variable
Focus on two variables
Question and final comments

Property 2 of LIPs
Property 3 of LIPs
Use of projections

Again recall the optimization problem

How to solve the below as a linear program?

minimize \(\{(x_1 - 1)^2 + (x_2 - 1)^2 : x_1 \in \{0, 1, 2\}, \ x_2 \in \{0, 1, 2, 3\}\} \)

Desire a polytope having 12 extreme points to correspond to the 12 realizations of \((x_1, x_2)\), and all linearized variables to equal to their intended products at the extreme points.

\((3 \text{ LIPs for } x_1) \otimes (4 \text{ LIPs for } x_2)\)

But do we really want terms including \(x_2^3\)?

\((3 \text{ LIPs for } x_1) \otimes (4 \text{ projected LIPs for } x_2)\)
Overview
Focus on a single variable
Focus on two variables
Question and final comments
Property 2 of LIPs
Property 3 of LIPs
Use of projections

Discrete polytopes - summary of results, round 6

$DP(d_1, d_2)$ for $x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}$, $x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}$.

<table>
<thead>
<tr>
<th>d_1</th>
<th>$d_2 = 0$</th>
<th>$d_2 = 1$</th>
<th>$2 \leq d_2 \leq k_2 - 2$</th>
<th>$d_2 = k_2 - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_1 = 0$</td>
<td>constant</td>
<td>$\theta_{21} \leq x_2 \leq \theta_{2k_2}$</td>
<td>proj. LIPs</td>
<td>LIPs</td>
</tr>
<tr>
<td>$d_1 = 1$</td>
<td>$\theta_{11} \leq x_1 \leq \theta_{1k_1}$</td>
<td>Glover/McCormick</td>
<td>RLT+proj. LIPs</td>
<td>RLT+LIPs</td>
</tr>
<tr>
<td>$2 \leq d_1 \leq k_1 - 2$</td>
<td>proj. LIPs</td>
<td>RLT+proj. LIPs</td>
<td>??????</td>
<td>RLT+proj. LIPs</td>
</tr>
<tr>
<td>$d_1 = k_1 - 1$</td>
<td>LIPs</td>
<td>RLT+LIPs</td>
<td>RLT+proj. LIPs</td>
<td>LIPs</td>
</tr>
</tbody>
</table>

$$p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j$$

Warren P. Adams and Stephen M. Henry The Ohio State University, 2014 MIP Workshop
Can we characterize the final (??????)?

Multiplying the inequalities of the projected LIPs for x_1 by the inequalities of the projected LIPs for x_2 gives valid inequalities for $DP(d_1, d_2)$ when $2 \leq d_1 \leq k_1 - 2$ and $2 \leq d_2 \leq k_2 - 2$, but does not fully characterize the set.
Discrete polytopes - summary of results, two comments

$$DP(d_1, d_2)$$ for $$x_1 \in \{\theta_{11}, \ldots, \theta_{1k_1}\}$$, $$x_2 \in \{\theta_{21}, \ldots, \theta_{2k_2}\}$$.

<table>
<thead>
<tr>
<th>$$d_1$$</th>
<th>$$d_2 = 0$$</th>
<th>$$d_2 = 1$$</th>
<th>$$2 \leq d_2 \leq k_2 - 2$$</th>
<th>$$d_2 = k_2 - 1$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$d_1 = 0$$</td>
<td>constant</td>
<td>$$\theta_{21} \leq x_2 \leq \theta_{2k_2}$$</td>
<td>proj. LIPs</td>
<td>LIPs</td>
</tr>
<tr>
<td>$$d_1 = 1$$</td>
<td>$$\theta_{11} \leq x_1 \leq \theta_{1k_1}$$</td>
<td>Glover/McCormick</td>
<td>RLT+proj. LIPs</td>
<td>RLT+LIPs</td>
</tr>
<tr>
<td>$$2 \leq d_1 \leq k_1 - 2$$</td>
<td>proj. LIPs</td>
<td>RLT+proj. LIPs</td>
<td>??????</td>
<td>RLT+proj. LIPs</td>
</tr>
<tr>
<td>$$d_1 = k_1 - 1$$</td>
<td>LIPs</td>
<td>RLT+LIPs</td>
<td>RLT+proj. LIPs</td>
<td>LIPs</td>
</tr>
</tbody>
</table>

$$p(x_1, x_2) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} a_{ij} x_1^i x_2^j$$
Two closing comments

- Can characterize products of binary x_1 and discrete x_2. The simplest case has $d_2 = 2$. The cubic function

$$a_{10} x_1 + a_{01} x_2 + a_{11} x_1 x_2 + a_{02} x_2^2 + a_{12} x_1 x_2^2$$

can be modeled using the linearized function

$$a_{10} x_1 + a_{01} x_2 + a_{11} w_{11} + a_{02} w_{02} + a_{12} w_{12}.$$

- As a consequence, can characterize products of continuous x_1 and discrete x_2.

Warren P. Adams and Stephen M. Henry

The Ohio State University, 2014 MIP Workshop